Tetrahedron Letters, Vol.23, No.30, pp 3065-3068, 1982 0040-4039/82/303065-04\$03.00/0 Printed in Great Britain ©1982 Pergamon Press Ltd.

STRUCTURES OF B-AMINO ACIDS IN ANTIBIOTICS ITURIN A

Akira Isogai*, Seiji Takayama, Shigeo Murakoshi[†] and Akinori Suzuki Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan [†] Kanagawa Horticultural Experimental Station, Ninomiya-machi, Kanagawa 259-01, Japan

Summary: An antibiotic iturin A was separated into several components $(A-1 \lor 8)$ using HPLC and the structures of the β -amino acids of each component were established based on NMR and mass spectral analysis.

During our screening search for antibiotics against phytopathogenic fungi, we isolated a peptidal substance produced by a <u>Bacillus</u> species and tentatively termed 10W. Physicochemical studies on 10W revealed that it was identical with iturin $A^{(1)}$, which is a mixture of homologous cyclic peptide composed of each one mole of a lipophilic β -amino acid, glutamine, tyrosine, proline and serine, and three moles of asparagine. The structures of two main components have been proposed as I-a and b by Peypoux et al²⁻⁵.

However, results of our preliminary studies on the antibiotic were not coincident with the proposed structures. Therefore, we attempted to carry out a complete characterization of the structures of each component of iturin A.

An antibiotic 10W was a mixture of homologous peptides and separated into eight components using HPLC on ODS (Nucleosil $5C_{10}$) with acetonitrile-10mM ammonium acetate (2:3) as in Fig.1-a, while iturin A gave seven peaks in the chromatogram as in Fig.1-b and each of them corresponded to $10W-2 \sim 8$. Though the contents of each component were slightly different between these two antibiotics, two abundant components of iturin A were evidently identical with 10W-2 and 4. Therefore, hereafter $10W-1 \sim 8$ are called iturin A-1 ~ 8 , respectively.

The mass spectra of each component of iturin A obtained with FAB ionization system showed homologous M+H ion peaks at $\underline{m}/\underline{z}$ 1029 for iturin A-1, 1043 for A-2, 1057 for A-3, A-4 and A-5, 1071 for A-6 and A-7, and 1085 for A-8. The mass spectra of the N-acetyl methyl ester of the lipophilic amino acids of iturin A-2 and A-4 isolated from the hydrolyzate by solvent extraction were identical with the published data of the same derivatives of C_{14} - and C_{15} -B-amino acids of iturin A, respectively³.

After being partially hydrolyzed, iturin A-2 afforded a mixture of oligopeptides, among which were identified Glu-Pro, Tyr-Asp, Ser-C₁₄- β -amino acid, Glu-Pro-Asp and Ser-C₁₄- β -amino acid-(Asp, Tyr).

In the 13 C-NMR spectra methyl carbons of aliphatic long chain compounds

usually resonate nearly at δ 14 ppm for <u>normal</u>-type compounds, 23 ppm for <u>iso</u>-type, and 11 and 19 ppm for <u>anteiso</u>-type compounds⁶⁾. The ¹³C-NMR spectrum of N-acetyl methyl ester of C₁₄- β -amino acid of iturin A-2 showed only one aliphatic methyl signal at δ 14.1 ppm, indicating that this β -amino acid is not of <u>iso</u>-type but of <u>normal</u> structure. The other signals⁷⁾ were well coincident with those of long chain aliphatic compounds⁶⁾. Thus the structure of C₁₄- β -amino acid of iturin A-2 should be 3-amino-tetradecanoic acid.

The above mentioned chemical shifts of the derivative of the isolated β -amino acid were very similar to those in the whole peptide, suggesting that those did not shift due to any steric effects in the peptide.

The ¹³C-NMR spectrum of iturin A-4 showed two equivalent methyls at δ 23.0 ppm, indicating that the C₁₅- β -amino acid of iturin A-4 is of <u>iso</u>-type and 3-amino-13-methyltetradecanoic acid. Chemical shifts in ¹³C-NMR spectra of terminal parts of C₁₄- and C₁₅- β -amino acids in iturin A-2, A-3, A-4 and A-5 are summarized in Table 1, confirming that the structure of the β -amino acid in iturin A-3 ² is 3-amino-12-methyltetradecanoic acid and that the C₁₅- β -amino acid in A-5 is 3-amino-pentadecanoic acid.

¹H-NMR spectra of the above four components thus determined were clearly distinguishable from each others in their methyl regions; a 3H distorted triplet for a <u>normal</u>-type compound, a 6H doublet for an <u>iso</u>-type and a 6H multiplet due to triplet plus doublet for an <u>anteiso</u>-type compound.

¹H-NMR spectra of the other minor homologs, iturin A-1, A-6 and A-7 and the mass spectra of the β-amino acids are shown in Table 1. All the structures of β-amino acids in iturin A components were established as in $\Pi - 1 \circ \Pi - 7$ for iturin A-1 \circ 7, respectively. Iturin A-8 was deduced to have an <u>anteiso</u>-type C₁₇-β-amino acid from the mass and ¹H-NMR spectra, but it could be obtained too little to be fully characterized by ¹³C-NMR spectrum.

The data disclosed above and the reported ones on iturin $A^{2)}$ suggest the structures of iturin A-1 \sim 7 to be Π -1 \sim 7.

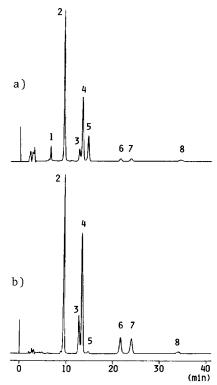


Fig.1. Chromatograms of the
antibiotics on HPLC (ODS).
a) 10W, b) iturin A.

(
$$\beta$$
-amino acid)
R-(CH₂)₈<sup>CHCH₂CO \longrightarrow Asn \longrightarrow Tyr \longrightarrow Asn \longrightarrow
NH
Ser \leftarrow Asn \leftarrow Pro \leftarrow Gln \leftarrow
R: I-a) (CH₃)₂CH- Π -1) CH₃CH₂-
b) CH₃CH₂CH- 2) CH₃CH₂CH₂-
CH₃ 3) CH₃CH₂CH₂-
CH₃ 3) CH₃CH₂CH-
CH₃ 4) (CH₃)₂CHCH₂-
5) CH₃CH₂CH₂CH₂-
6) (CH₃)₂CHCH₂CH₂-
7) CH₃CH₂CH₂CH₂CH₂-</sup>

	MS ^{a)}		13 C-NMR, $\delta(ppm)^{b}$				¹ H-NMR	MS of β-
	(M+H) +	C-15	C-14	C-13	C-12	CH ₃ ^{c)}	δ(CH ₃)	amino acid $(M^+)^{d}$
A-1	1029						0.9 (3H,t)	285
A - 2	1043		14.5	23.7	33.1		0.9 (3H,t)	299
A - 3	1057		11.8	30.0	35.7	19.7	0.9 (6H,m)	313
A-4	1057		23.0	29.1	40.0	23.0	0.9 (6H,d)	313
A - 5	1057	14.4	23.7	33.1	30.0		0.9 (3H,t)	313
A-6	1071						0.9 (6H,d)	327
A - 7	1071						0.9 (3H,t)	327
A - 8	1085						0.9 (6H,m)	341

Table 1. Mass and NMR Spectra of Iturin A-1 \sim A-8 and Mass Spectra of Their $\beta\text{-Amino}$ Acid Derivatives.

- a) measured with FAB ionization system.
- b) carbons of β -amino acid residue.
- c) branch methyl
- d) obtained as N-acetyl methyl ester.

In recent years, Peypoux, Delcambe and their co-workers have studied the antibiotics belonging to iturin group, such as iturin $C^{8)}$, mycosubtilin⁹⁾, bacillomycin L¹⁰⁾ and bacillomycin D¹¹⁾. All these antibiotics also have $C_{14} \sim C_{17}$ - β -amino acids. The structures of these β -amino acids should be reinvestigated because these have been determined in comparison with those of iturin A.

<u>Acknowledgements</u>. The authors thank Prof. F. Peypoux of Universite Claude Bernard for supplying a specimen of iturin A. They are also grateful to Mr. E. Yamauchi of JEOL Company Ltd. for measurement of FAB-mass spectra.

References.

- 1) L. Delcambe, Bull. Soc. Chim. Belg., <u>74</u>, 315 (1965).
- F. Peypoux, M. Guinand, G. Michel, L. Delcambe, B. C. Das and E. Lederer, Biochemistry, <u>17</u>, 3992 (1978).
- F. Peypoux, M. Guinand, G. Michel, L. Delcambe, B. C. Das, P. Varenne and E. Lederer, Tetrahedron, <u>29</u>, 3455 (1973).
- 4) C. G. Jaureguiberry, B. P. Roques, L. Delcambe, F. Peypoux and G. Michel, FEBS Lett., <u>93</u>, 151 (1978).
- 5) U. Nagai, F. Besson and F. Peypoux, Tetrahedron Lett., <u>1979</u>, 2359.
- "¹³C-NMR Spectroscopy" by E. Breitmaier and W. Voelter, 2nd ed., p. 131, Verlag Chemie, Weinheim, 1978.
- 7) Chemical shifts of the derivative were as follows (CDCl₃): 14.1 (C-14), 22.7 (C-13), 31.9 (C-12), 30.0 (C-6 ∨ C-11), 26.2 (C-5), 34.1 (C-4), 46.2 (C-3), 38.2 (C-2), 172.5, 169.7 (C-1, acetyl CO), 51.6 (OCH₃), 23.4 (acetyl CH₃).
- F. Peypoux, F. Besson, G. Michel, L. Delcambe and B. C. Das, <u>Tetrahedron</u>, <u>34</u>, 1147 (1978).
- 9) F. Peypoux, G. Michel and L. Delcambe, Eur. J. Biochem., <u>63</u>, 391 (1976).
- F. Besson, F. Peypoux, G. Michel and L. Delcambe, <u>Eur. J. Biochem.</u>, <u>77</u>, 61 (1977).
- F. Peypoux, F. Besson, G, Michel and L. Delcambe, <u>Eur. J. Biochem.</u>, <u>118</u>, 323 (1981).

(Received in Japan 14 April 1982)